On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks

نویسندگان

  • Zhongyun Liu
  • Yulin Zhang
  • C. Ferreira
  • Rui Ralha
چکیده

We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Diagonal and Schur Complement Preconditioners for Block-Toeplitz Systems with Small Size Blocks

Abstract. In this paper we consider the solution of Hermitian positive definite block-Toeplitz systems with small size blocks. We propose and study block diagonal and Schur complement preconditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers and this fixe...

متن کامل

On a Newton Method for the Inverse Toeplitz Eigenvalue Problem

Iterative methods for inverse eigenvalue problems involve simultaneous approximation of the matrix being sought and its eigenvectors This paper revisits one such method for the inverse Toeplitz eigenvalue problems by exploring the eigenstructure of centrosymmetric matrices All itera tions are now taking place on a much smaller subspace One immediate consequence is that the size of the problem i...

متن کامل

A polynomial fit preconditioner for band Toeplitz matrices in image reconstruction

The preconditioned conjugate gradient (CG) is often applied in image reconstruction as a regularizing method. When the blurring matrix has Toeplitz structure, the modified circulant preconditioner and the inverse Toeplitz preconditioner have been shown to be effective. We introduce here a preconditioner for symmetric positive definite Toeplitz matrices based on a trigonometric polynomial fit wh...

متن کامل

Kronecker product approximations for dense block Toeplitz-plus-Hankel matrices

In this paper, we consider the approximation of dense block Toeplitz-plus-Hankel matrices by sums of Kronecker products. We present an algorithm for efficiently computing the matrix approximation that requires the factorization of matrices of much smaller dimension than that of the original. The main results are described for block Toeplitz matrices with Toeplitz-plus-Hankel blocks (BTTHB), but...

متن کامل

Regularizing Inverse Preconditioners for Symmetric Band Toeplitz Matrices

Image restoration is a widely studied discrete ill-posed problem. Among the many regularization methods used for treating the problem, iterative methods have been shown to be effective. In this paper, we consider the case of a blurring function defined by space invariant and band-limited PSF, modeled by a linear system that has a band block Toeplitz structure with band Toeplitz blocks. In order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2010